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Abstract. We study the behavior of dynamic equilibria in mean field games

with large time horizons in a dynamic consumer choice model. We show that

if the stationary equilibrium in the associated infinite horizon game is unique,

the dynamic equilibria of the finite horizon games converge to the stationary

equilibrium of the infinite horizon game as the time horizon tends to infinity. If

the stationary equilibrium is not unique, however, the situation becomes more

involved. In this case, we show that in addition to convergence to the stationary

equilibria it is possible that, in the long run, the dynamic equilibria circle around

randomized stationary equilibria.
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1. Introduction

The objective of this article is to study the convergence of equilibria of finite time horizon mean

field games as the time horizon tends to infinity. To wit, one may expect that under reasonable

assumptions the finite horizon equilibria converge to equilibria in the corresponding infinite

horizon mean field game. In fact, there are several cases in which such convergence has been

observed in the existing literature. What these results have in common is that assumptions

are put in place which guarantee that the stationary equilibrium in the infinite horizon game

is unique. With the present article, our aim is to shed light on the long-run behavior and

convergence of finite horizon equilibria in cases in which uniqueness in the infinite horizon

limit fails. The intuition in this setting is that there are multiple attractors for the finite horizon
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equilibria, and hence the limiting behavior is much more dependent on the boundary data

imposed upon the finite horizon game. Adding to this, the absence of uniqueness gives rise to

randomized stationary equilibria and it is a priori unclear what their effect on the long-run

behavior of (non-randomized, finite horizon) equilibria may be.

To address these challenging questions, we consider a simple toy model motivated by consumer

choice in which the representative agent problem has finite state and action spaces. The

motivation for this choice is two-fold. First, games with finite state and action spaces are among

the most tractable classes of mean field games. In particular, following e.g. [BHS21], equilibria in

the finite horizon setting can be constructed by solving a system of forward-backward ordinary

differential equations in contrast to systems of partial differential equations in the general case.

Second and even more importantly, the restriction to a finite state space gives us access to the

powerful results of [Neu20] which allow us to characterize all stationary equilibria (including

randomized ones) of the infinite horizon game.

As it turns out, the stationary equilibria of the infinite horizon problem correspond to stationary

points of the system of differential equations characterizing the finite horizon equilibria. In

light of this, the task we face in this work is the study of convergence of a dynamical system to

its stationary points. While problems of this type have a long history, the particular system

which arises in our setting is non-standard and comes with its own unique challenges. To be

precise, the system we consider takes the form

M(t) = F→
(
M(t),W (t)

)
and W (t) = F←

(
M(t),W (t)

)
,

where F→ describes the forward dynamics (i.e. we impose an initial condition on M ) and

F← describes the backward dynamics (meaning that we impose a terminal condition on W ).

The first challenge arises from the fact that this is a forward-backward system in contrast to

purely forward systems usually studied in the dynamical systems literature. Second and more

strikingly, the right-hand side of the forward equation, that is F→, turns out to be discontinuous.

While there has been some progress on the study of dynamical systems with discontinuous

right-hand sides in recent years, our particular system does not seem to be covered by the

existing literature in that field.

The mean field game under consideration in this article has the property that the number of

stationary points of the dynamical system depends crucially on the choice of parameters. That

is, while one can choose the parameters so that the stationary point is unique (and hence so

is the equilibrium in the infinite horizon problem), there are other parameter constellations

which give rise to up to five stationary points corresponding to three non-randomized and two

randomized stationary equilibria. We take advantage of this property and study two cases in

great detail. In the first case, the parameters are chosen such that the stationary point is unique.

Here, the problem ends up being quite tractable and hence it should not come as a surprise that

we are able to establish convergence of the finite horizon equilibria to the unique stationary

equilibrium of the infinite horizon game. Convergence is to be understood in the sense that

there exists a time interval whose size grows to infinity in the limit, on which the dynamical

system converges to the unique stationary point. By analogy, this property is referred to as the

turnpike property; see [GZ22] for a recent overview and historical background. The second case

we consider admits three stationary equilibria, one of which is randomized, and both the study
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of convergence and the results we obtain become significantly more sophisticated. Depending

on the initial and terminal data of the dynamical system, we either observe convergence to one

of the equilibria, that the finite horizon equilibrium circles around the randomized stationary

equilibrium, or combinations of both. This signifies the tremendous effect the assumption of

uniqueness has on the long-run behavior of equilibria and constitutes the main contribution of

this article.

1.1. Related Literature

The beginnings of mean field game theory are usually accredited to the articles [HMC06] and

[LL07]. Since then, both a rich mathematical theory has unfolded and many applications of

that theory have emerged. We refer to the monographs [BFY13; CD18a; CD18b] or the lecture

notes [Car13b] for the general theory and mention [BD15; GVW14; Gué09; KB16; KM17] as a

non-exhaustive list of exemplary applications. The particular mean field game we consider in

the present article falls into the class of continuous-time mean field games with finite state space,

for which the general theory has been developed in [GMR13; Gué15; BC18; CP19b; DGG19;

CF20; Neu20; BHS21; CW21] among others; see also §7.2 in [CD18a].

Convergence of equilibria in mean field games with finite state spaces has been established in

[GMR10] in discrete time and [GMR13] in continuous time under the Lasry-Lions monotonicity

condition (implying uniqueness of equilibria). Moreover, it has been established in the general

diffusion-based setting under the monotonicity condition in [Car+12; Car+13] for quadratic

Hamiltonians and in [Por18] for globally Lipschitz, locally uniformly convex Hamiltonians,

respectively. Convergence results for weakly non-monotone games can be found in [CP21]. In

addition to convergence of equilibria, there are results on convergence of the (scaled) value

function to a limit (which does not necessarily coincide with an equilibrium value of the

stationary game) under more general assumptions. We mention [CP19a] under the monotonicity

condition, [Car13a] for first order games given a coercivity condition (which again implies

uniqueness of the value of the stationary equilibrium), [FG14] for potential games with finite

state spaces, [CM20; Mas19] for potential games in the diffusion setting, and [BK23] for games

admitting a very particular attraction behavior. Finally, there is a series of papers [CC21; Cir19;

CN18] in which periodic solutions for some non-monotone, first order mean field games are

constructed. Let us also mention [KM18], in which a model linked to botnet defence and the

spread of corruption is considered, and dynamic equilibria exhibiting the turnpike property are

constructed from stationary equilibria. This is in contrast to our results, as we do not construct

dynamic equilibria having the turnpike property, but in fact establish the long-run behavior of

all dynamic equilibria.

Regarding the study of dynamical systems with discontinuous right-hand sides, we mention the

classical monograph [Fil88] for a general overview. Moreover, for the study of stationary points

of dynamical systems with discontinuous right-hand sides, we refer e.g. to the recent results

obtained in [BCS13; DEP17]. However, let us highlight that we are not aware of any results in

the literature which cover our particular system of equations, neither in terms of existence of

solutions nor in terms of qualitative behavior of the dynamical system. As such, our work also

contributes to this independent strand of literature.
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The remainder of the paper is organized as follows. We first discuss the mean field game in

Section 2 and introduce the forward-backward system of differential equations characterizing

dynamic equilibria. In Section 3 we gather preliminary results on properties of the solution of the

forward-backward system which allow us to derive the precise structure of the solution in the

subsequent sections. Section 4 is then devoted to the study of the case with a unique stationary

equilibrium, whereas Section 5 addresses the case with multiple stationary equilibria. Finally,

Appendix A contains the preliminary analysis of the forward-backward system including an

existence result and Appendix B is devoted to the proof that the forward-backward system

indeed induces dynamic equilibria.

2. A Dynamic Consumer Choice Model

We consider a dynamic version of the stationary consumer choice model studied in [Neu20].

Employing the framework introduced in [BHS21], the model is formulated as a mean field game

with finite time horizon T > 0. In this model, a continuum of agents has the choice between

two phone providers and the individual agents’ utility depends on the share of agents with the

same provider.

To make this precise, we denote by Xt ∈ S := {1, 2} the provider of a representative agent at

any time t ∈ [0, T ]. The agent’s action at time t is denoted by νt ∈ U := {stay , switch}, where

we interpret νt = stay as the action of staying with the current provider and νt = switch as

the action of switching providers. A switch between providers, i.e. a jump in X = {Xt}t∈[0,T ],

is not assumed to take place instantaneously but at transition rates instead. More precisely, if

νt = switch the agent switches to the other provider at a rate of κ > 0, whereas if νt = stay a

switch between providers only occurs at a small baseline transition rate ε > 0 satisfying ε < κ.

Thus, writing

Q(u) :=

(
−ε ε

ε −ε

)
1{u=stay} +

(
−κ κ

κ −κ

)
1{u=switch}, u ∈ U,

the time-t transition rate matrix of the state process X under the action νt is given by Q(νt).
For simplicity, we restrict

1
the agent’s actions to Markovian feedback controls given by

AT :=
{
ν : [0, T ]× S → U

∣∣ ν is Borel-measurable

}
.

To wit, given ν ∈ AT , the agent’s time-t action is

νt := ν(t,Xt−), t ∈ [0, T ].

With this, we can construct a probability space (Ω,A,P) supporting an S-valued process

X = {Xt}t∈[0,T ] such that for each ν ∈ AT there is a probability measure Pν ∼ P such that

under Pν
, the time-t transition rate matrix of X is Q(νt) = Q

(
ν(t,Xt−)

)
;

1

Following [BHS21], optimizers in the class of Markovian feedback controls are also optimal in the larger class of

closed-loop controls and hence no generality is lost by this restriction.
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see Section 2 in [BHS21] for details. Writing Eν
for the expectation operator with respect to Pν

and fixing a discount factor β > 0, the representative agent faces the optimization problem

sup
ν∈AT

Eν
[∫ T

0
e−βtψXt(M(t), νt) dt+ e−βTΨXT

(
M(T )

)]
. (2.1)

Here, the Borel-measurable function M : [0, T ] → [0, 1] models the fraction of agents serviced

by provider 1 ∈ S as a function of time, implying that 1−M is the fraction of agents serviced

by provider 2 ∈ S. The functions ψ and Ψ appearing in (2.1) model the running and terminal

reward, respectively. The running reward ψ : [0, 1]× U → R2
is assumed to be of the form

ψ(m,u) =

(
ψ1(m,u)

ψ2(m,u)

)
:=

(
U1(m)− C1{u=switch}

U2(1−m)− C1{u=switch}

)
, (m,u) ∈ [0, 1]× U,

where C > 0 denotes the instantaneous switching cost and Ui(m) the utility of being serviced

by provider i ∈ S given that the share of agents using the same provider is m. Following

[Neu20], we assume Ui to be of the form

Ui : [0, 1] → R, m 7→ Ui(m) := log
(
fδ(m)

)
+ si

for si ∈ R and a cutoff function
2

fδ : [0, 1] → [0, 1], y 7→

{
y if y ≥ δ
1
2δy

2 + δ
2 if y < δ

for some δ ∈ (0, 1) small. Finally, we suppose that the terminal reward

Ψ : [0, 1] → R2, m 7→ Ψ(m) =

(
Ψ1(m)

Ψ2(1−m)

)

is continuous and hence bounded. With this, we speak of a mean field equilibrium if we can find

a pair (ν,M) such that ν ∈ AT is optimal for (2.1) and the distribution of X under the optimal

action ν coincides with M , that is

Pν
[
Xt ∈ ·

]
=
(
M(t), 1−M(t)

)
, t ∈ [0, T ].

In other words, equilibrium obtains if the agent’s ex ante expectations coincide with the ex post

aggregrate distribution resulting from all agents’ optimal decisions.

2.1. Construction of Dynamic Equilibria

Since the model is formulated in the framework of [BHS21], the construction of equilibria can be

reduced to solving a system of forward-backward ordinary differential equations. The forward

equation describes the evolution of the aggregate distribution of agents M(t) in equilibrium,

2

The cutoff function is just a technical tool needed to ensure Ui(0) > −∞.
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whereas the backward equation determines the value function v : [0, T ]× S → R associated

with the representative agent problem (2.1) in equilibrium.

Before introducing the forward-backward system we observe that, to wit, the optimal action

of the representative agent depends only on the difference between the indirect utilities of

being with the respective providers. More precisely, if v(t, i) denotes the value function at time

t ∈ [0, T ] conditioned on the representative agent being in state i ∈ S, we argue below that

optimal actions only depend on the difference

W (t) :=
[
v(t, 1)− v(t, 2)

]
eβt, t ∈ [0, T ].

The optimal action in state i = 1 is to switch providers if and only if W (t) is below a certain

threshold, whereas the optimal action in state i = 2 is to switch providers if and only if W (t) is

above another threshold. We will see below that these two thresholds are given by −ρ and ρ,

respectively, where

ρ := C
κ−ε .

With these ideas fixed, using the results of [BHS21], we can now introduce the system of

forward-backward ordinary differential equations whose solutions describe dynamic mean field

equilibria as detailed in Theorem 2.1 below. We look for functions

M : [0, T ] → [0, 1] and W : [0, T ] → R

which solve the system of differential equations

Ṁ(t) = F→
(
M(t),W (t)

)
, t ∈ [0, T ], M(0) =M0, (2.2)

Ẇ (t) = F←
(
M(t),W (t)

)
, t ∈ [0, T ], W (T ) = G

(
M(T )

)
. (2.3)

We refer to these equations as the equilibrium system. The functions F→ : [0, 1]× R → R and

F← : [0, 1]× R → R are given by

F→(m,w) :=


ε− (κ+ ε)m if w ≤ −ρ,
ε− 2εm if w ∈ (−ρ, ρ),
κ− (κ+ ε)m if w ≥ ρ,

(m,w) ∈ [0, 1]× R, (2.4)

F←(m,w) :=


g(m) + C + (β + κ+ ε)w if w ≤ −ρ,
g(m) + (β + 2ε)w if w ∈ (−ρ, ρ),
g(m)− C + (β + κ+ ε)w if w ≥ ρ,

(m,w) ∈ [0, 1]× R. (2.5)

Moreover, in (2.2), M0 ∈ [0, 1] denotes the initial fraction of agents in state i = 1 at time t = 0
whereas the terminal condition in (2.3) is given as the difference in terminal rewards in the

respective states, that is

G : [0, 1] → R, m 7→ G(m) := Ψ1(m)−Ψ2(1−m).

Finally, the function g appearing in F← is given by the difference in running utility, that is

g : [0, 1] → R, m 7→ g(m) := U2(1−m)− U1(m) = log
(
fδ(1−m)
fδ(m)

)
− (s1 − s2).
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The case distinctions in (2.4) and (2.5) arise from the different optimal actions depending on

whether W (t) is below, in between, or above the two thresholds −ρ and ρ. Let us furthermore

highlight that F→ in (2.4) is discontinuous across w = −ρ and w = ρ. As a consequence, we

cannot expect (2.2) – (2.3) to admit solutions in the classical sense, but need to rely on a weaker

solution concept instead. It turns out that we should interpret the forward equation in the

Filippov sense [Fil88], which is to say that M is absolutely continuous and

Ṁ(t) ∈


{
F→
(
M(t),W (t)

)}
if W (t) ̸= −ρ, ρ[

ε− (κ+ ε)M(t), ε− 2εM(t)
]

if W (t) = −ρ[
ε− 2εM(t), κ− (κ+ ε)M(t)

]
if W (t) = ρ

for a.e. t ∈ [0, T ].

The backward equation, on the other hand, can be interpreted in the classical sense, that is, W
is continuously differentiable and satisfies

Ẇ (t) = F←
(
M(t),W (t)

)
for all t ∈ [0, T ].

We refer to Appendix A for a detailed account on existence, basic structural properties, and (local)

closed-form expressions of M and W . Given (M,W ), we can formalize the construction of

(non-randomized) dynamic equilibria in the following theorem; the proof is given in Appendix B.

Theorem 2.1 (Dynamic Equilibrium). Suppose that there exists a solution (M,W ) of the equilib-
rium system (2.2) – (2.3) such that{

t ∈ [0, T ] :W (t) ∈ {−ρ, ρ}
}

has Lebesgue measure zero

and define

h : R → U2, w 7→ h(w) :=


(switch, stay) if w ≤ −ρ
(stay , stay) if w ∈ (−ρ, ρ)
(stay , switch) if w ≥ ρ.

Writing h = (h1, h2), a mean field equilibrium for the dynamic consumer choice problem is given
by the pair (ν,M) with

ν : [0, T ]× S → U, (t, i) 7→ ν(t, i) := hi
(
W (t)

)
. ⋄

The question of whether or not the set {W ∈ {−ρ, ρ}} has Lebesgue measure zero depends

on the model parameters and is intimately related to the existence of randomized equilibria.

Indeed, since g is strictly decreasing, it has a strictly decreasing inverse denoted by g−1. With

this, we can introduce two constants

k1 := g−1
(
(β + 2ε)ρ

)
and k2 := g−1

(
−(β + 2ε)ρ

)
. (2.6)

Note that k1 < k2 by monotonicity of g−1. In Lemma A.3 in the appendix we show that{
t ∈ [0, T ] :W (t) = −ρ

}
has Lebesgue measure zero if k1 ̸∈

[
ε

κ+ε ,
1
2

]
,
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{
t ∈ [0, T ] :W (t) = ρ

}
has Lebesgue measure zero if k2 ̸∈

[
1
2 ,

κ
κ+ε

]
.

Now suppose that k1 ∈ [ε/(κ + ε), 1/2]. Then it is possible that {W = −ρ} has positive

Lebesgue measure. The reason is that in this situation the point (k1,−ρ) is a stationary point

of the equilibrium system (2.2) – (2.3). In fact, if (M(t),W (t)) = (k1,−ρ), the representative

agent needs to randomize in order to achieve an equilibrium. More precisely, an equilibrium

strategy requires the choice of actions

(switch, stay) with probability p− and (stay , stay) with probability 1− p−,

where p− solves

0 = p− lim
w↑−ρ

F→(k1, w) + (1− p) lim
w↓−ρ

F→(k1, w)

= p−
[
ε− (κ+ ε)k1

]
+ (1− p−)

[
ε− 2εk1

]
.

Note that this equation has a [0, 1]-valued solution if and only if k1 ∈ [ε/(κ+ε), 1/2]. Similarly,

if k2 ∈ [1/2, κ/(κ+ ε)], the set {W = ρ} may have positive Lebesgue measure since (k2, ρ) is

a stationary point of the equilibrium system. The randomized equilibrium action in this case is

(stay , stay) with probability p+ and (stay , switch) with probability 1− p+,

where p+ solves

0 = p+
[
ε− 2εk2

]
+ (1− p+)

[
κ− (κ+ ε)k2

]
. (2.7)

As above, this equation has a [0, 1]-valued solution if and only if k2 ∈ [1/2, κ/(κ+ ε)]. These

arguments and the construction of randomized equilibria can be made rigorous but require

a more general model setup compared to [BHS21] in which one allows randomized controls

as well. Since this is outside the main focus of this article, we refrain from presenting this

construction here.

2.2. The Stationary Model and its Solution

The objective of this article is to study the behavior of the dynamic equilibrium constructed

in Theorem 2.1 as T → ∞. Informally, the representative agent’s optimization problem in the

limit reads

sup
ν∈A∞

Eν
[∫ ∞

0
e−βtψXt

(
M(t), νt

)
dt
]
.

Allowing for randomized strategies, that is, allowing the agent to choose their actions from the

set P(U) of probability distributions over U, the model fits into the framework of [Neu20]. As

is customary in infinite horizon problems, we only look for stationary equilibria, i.e. we look

for (randomized strategy) equilibria

M ∈ [0, 1] and ν : S → P(U)

which do not depend on the time component. From this, we see that non-randomized stationary

equilibria (M,ν) can be expressed as pairs (M,h) ∈ [0, 1]×U2
if we identify h = (ν(1), ν(2)).
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In [Neu20], all stationary equilibria of the infinite horizon problem have been characterized,

including all randomized strategy equilibria. The number and locations of the stationary

equilibria are determined by the two constants k1 and k2 given in Equation (2.6) relative to the

constants ε/(κ+ ε), 1/2, and κ/(κ+ ε). To simplify the exposition and to avoid having to deal

with too many case distinctions, we subsequently restrict our considerations to the following

two representative cases.

(E1) k1 < ε/(κ+ ε) and k2 < 1/2.

In this situation there is a unique stationary equilibrium atM = κ/(κ+ε) with associated

equilibrium action h = (stay , switch).

(E2) k1 < ε/(κ+ ε) and 1/2 < k2 < κ/(κ+ ε).
In this case there are two non-randomized stationary equilibria at M = 1/2 with as-

sociated equilibrium action h = (stay , stay) and at M = κ/(κ + ε) with associated

action h = (stay , switch), respectively. There furthermore exists one randomized equilib-

rium, in which the representative agent chooses the action (stay , stay) with probability

p ∈ (0, 1) and the action (stay , switch) with probability 1− p. The equilibrium distribu-

tion of agents associated with this randomized equilibrium isM = k2. The probability p is

known explicitly and given as the unique probability such that (k2, 1− k2) is a stationary

point given the equilibrium strategy, which means that p is the unique solution of

0 = k2 · (−ε) + (1− k2)
(
εp+ κ(1− p)

)
,

which in turn is equivalent to (2.7).

For both cases, we study the question of whether the dynamic equilibrium of the finite horizon

problem obtained in Theorem 2.1 converges to an equilibrium of the infinite horizon problem

as T → ∞. For this, we need to study the behavior of solutions (M,W ) of the equilibrium

system (2.2) – (2.3) as T → ∞. Note that while we focus only on the two specific parameter

configurations (E1) and (E2), our arguments carry over to all other cases as well.

3. Properties of Solutions of the Equilibrium System

Before we study the asymptotic behavior of solutions (M,W ) of the equilibrium system, we

first analyze the properties of such solutions for a fixed finite time horizon T . In particular, it is

crucial to understand how much time the solution (M,W ) spends in the respective cases in the

equilibrium system (2.2) – (2.3) and what happens at the transitions between them.

The main existence result on solutions of the equilibrium system is given in Theorem A.4 in the

appendix. There, we establish existence of a solution (M,W ) of the equilibrium system and

show that there exists an index set N ⊆ N and disjoint open intervals {In}n∈N with

⋃
n∈N In

dense in [0, T ] such that, for each n ∈ N , M is continuously differentiable on In and one of

the following five cases holds:

(Lo) W < −ρ and Ṁ = ε− (κ+ ε)M on In,

(Med) W ∈ (−ρ, ρ) and Ṁ = ε− 2εM on In,
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(Hi) W > ρ and Ṁ = κ− (κ+ ε)M on In,

(Eq−) W = −ρ and M = k1 on In,

(Eq+) W = ρ and M = k2 on In.

In what follows, we shall always assume that the intervals In are maximal with respect to the

properties in the respective cases.
3

With this, it follows that

W (t) ∈ {−ρ, ρ} for all t ∈ (0, T ) \
⋃
n∈N

In,

i.e. W necessarily takes the value −ρ or ρ at the transitions between the intervals In and there

are at most countably many transitions. Finally, we note that on each interval In, both M and

W satisfy linear differential equations and hence admit closed-form expressions which we have

gathered in Appendix A for the reader’s convenience and which we will subsequently refer to

quite frequently.

When studying the two parameter constellations (E1) and (E2), the first objective is always to

understand the precise sequence of intervals (Lo), (Med), (Hi), (Eq−), and (Eq+) the solution

(M,W ) of the equilibrium system traverses. For example, in case of (E1) we are able to show

that there are at most the five different scenarios given by

(Med) (Lo) → (Med) (Hi) → (Med)

(Med) → (Hi) → (Med) (Lo) → (Med) → (Hi) → (Med)

The remainder of this section is devoted to establishing several preliminary results which facili-

tate the derivation of these scenarios. For this, we subsequently fix n ∈ N and a corresponding

interval In. We furthermore suppose that In = (a, b) for a, b ∈ [0, T ] with a < b. We proceed

to analyze the properties of (M,W ) on (a, b), beginning with a relatively simple result which

gives information on the value of M at the beginning of the interval (a, b).

Lemma 3.1. Suppose that a > 0. Then the following statements hold.
1. If (a, b) is of type (Lo), then M(a) ≥ k1.
2. If (a, b) is of type (Med) and W (a) = −ρ, then M(a) ≤ k1.
3. If (a, b) is of type (Med) and W (a) = ρ, then M(a) ≥ k2.
4. If (a, b) is of type (Hi), then M(a) ≤ k2. ⋄

Proof. The idea is the same for all four cases, so we only prove the first one. That is, we assume

that (a, b) is of type (Lo), i.e. W (t) < −ρ for all t ∈ (a, b). We note that in this situation we

must have W (a) = −ρ by continuity of W , maximality of (a, b), and since a > 0. The two

properties W (a) = −ρ and W < −ρ on (a, b) show that Ẇ (a) ≤ 0. Moreover, at a we are in

the first case of (2.5) and hence

0 ≥ Ẇ (a) = g
(
M(a)

)
+ C + (β + κ+ ε)W (a) = g

(
M(a)

)
− (β + 2ε)ρ,

3

For example, if In is of type (Lo), maximality is to be understood in the sense that there is no open interval

J ⊂ [0, T ] such that W < ρ on J and In is a proper subset of J .
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where we have used W (a) = −ρ and C = (κ − ε)ρ for the last identity. Solving for M(a)
yields

M(a) ≥ g−1
(
(β + 2ε)ρ

)
= k1,

which concludes the proof.

The next result provides conditions under which we can conclude that a = 0.

Lemma 3.2. The following statements hold.

1. If (a, b) is of type (Lo) and M(t) < k1 for all t ∈ (a, b), then a = 0.

2. If (a, b) is of type (Med) and M(t) ∈ (k1, k2) for all t ∈ (a, b), then a = 0.

3. If (a, b) is of type (Hi) and M(t) > k2 for all t ∈ (a, b), then a = 0. ⋄

Proof. As before, we only give a proof for the case in which (a, b) is of type (Lo) andM(t) < k1
for all t ∈ (a, b) since the other two cases follow by similar arguments. As (a, b) is of type (Lo),
it follows that W is given explicitly as

W (a) =W (b)e−(β+κ+ε)(b−a) −
∫ b

a
e(β+κ+ε)(a−t)[g(M(t)

)
+ C

]
dt;

see Equation (A.7) in the appendix. Since W (b) ≤ −ρ by continuity of W (with equality if

b < T ), it follows that

W (a) ≤ −ρe−(β+κ+ε)(b−a) −
∫ b

a
e(β+κ+ε)(a−t)[g(M(t)

)
+ C

]
dt.

Since M < k1 on (a, b) and the function g is strictly decreasing, we find that

g
(
M(t)

)
+ C > g(k1) + C = (β + 2ε)ρ+ C = (β + κ+ ε)ρ, t ∈ (a, b),

where we have used that C = (κ− ε)ρ and that k1 = g−1((β+2ε)ρ); see Equation (2.6). Thus,

since a < b,

W (a) < −ρe−(β+κ+ε)(b−a) −
∫ b

a
e(β+κ+ε)(a−t)(β + κ+ ε)ρ dt = −ρ.

Now if a were strictly positive, continuity of W and maximality of (a, b) for W < −ρ would

imply that W (a) = −ρ. In light of the strict inequality above, we conclude that a = 0.

Whenever W (t) is either equal to −ρ and ρ, it will be important to decide in which case we

were before time t just by looking at M(t). The next result provides sufficient conditions under

which this is possible.

Lemma 3.3. The following statements hold.

1. If W (b) = −ρ and M(b) < k1, the interval (a, b) is of type (Lo).

2. If W (b) = −ρ and M(b) > k1, the interval (a, b) is of type (Med).
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3. If W (b) = ρ and M(b) < k2, the interval (a, b) is of type (Med).
4. If W (b) = ρ and M(b) > k2, the interval (a, b) is of type (Hi). ⋄

Proof. As usual, we only consider the first case as the other cases can be proved analogously.

Since W is continuously differentiable, we note that it satisfies

Ẇ (b) = g
(
M(b)

)
+ C + (β + κ+ ε)W (b) = g

(
M(b)

)
− (β + 2ε)ρ,

since W (b) = −ρ and C = (κ− ε)ρ. As g is strictly decreasing and M(b) < k1, it follows that

Ẇ (b) > g(k1)− (β + 2ε)ρ = 0

by definition of k1; see (2.6). This concludes the proof by continuity of W and Ẇ .

4. The Unique Stationary Equilibrium Case (E1)

We now consider the case (E1) in detail. That is, we subsequently assume that k1 < ε/(κ+ ε)
and k2 < 1/2. Recall that this implies that there exists a unique stationary equilibrium at

M = κ/(κ+ ε) with associated equilibrium strategy h = (stay , switch). Moreover, according

to Theorem A.4 in the appendix, the assumptions on k1 and k2 imply that there are no intervals

of type (Eq−) or (Eq+), so that {W ∈ {−ρ, ρ}} is a countable subset of [0, T ]. Finally, to keep

the number of case distinctions at a reasonable level, we furthermore assume for convenience

that the terminal condition satisfies

−ρ < G(m) < ρ, m ∈ [0, 1]. (4.1)

This assumption guarantees that the last interval before T is of type (Med).

4.1. Structure of the Solution (M,W )

We now give a complete characterization of the structure of the solution (M,W ) of the equi-

librium system in the sense that we derive all possible sequences of cases that the solution

traverses. For this, a backward induction can be used to characterize the structure of the solution

(M,W ). More precisely, we observe that (4.1) implies that there exists t1 ∈ [0, T ) such that the

interval (t1, T ) is of type (Med). At this point, we need to distinguish several cases as follows.

▷ t1 = 0, in which case (0, T ) is of type (Med).

▷ t1 > 0 and W (t1) = −ρ. In this case, there exists some t2 ∈ [0, t1) such that the interval

(t2, t1) is of type (Lo). We claim that we must in fact have t2 = 0. Indeed, let us argue

by contradiction and assume that t2 > 0. In this situation, Lemma 3.1.1 and 3.1.2 are

applicable, so we conclude that M(t1) ≤ k1 ≤M(t2). However, (t2, t1) is of type (Lo)
and hence M is given explicitly as

M(t) =
(
M(t1)− ε

κ+ε

)
e(κ+ε)(t1−t) + ε

κ+ε , t ∈ [t2, t1];

see Equation (A.6) in the appendix. Since M(t1) ≤ k1 < ε/(κ+ ε), it follows that M is

strictly increasing on [t2, t1], which contradictsM(t1) ≤ k1 ≤M(t2). We have therefore

argued that t2 = 0.
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▷ t1 > 0 and W (t1) = ρ. It follows that there exists t2 ∈ [0, t1) such that the interval

(t2, t1) is of type (Hi) and we have to consider two subcases.

▷▷ t2 = 0, in which case the backward induction ends.

▷▷ t2 > 0, in which case there exists t3 ∈ [0, t2) such that the interval (t3, t2) is of

type (Med). Once again, we have to consider two subcases.

▷ ▷ ▷ t3 = 0, in which case the backward induction ends.

▷ ▷ ▷ t3 > 0, in which case (0, t3) is of type (Lo) and the backward induction ends as

well. To see this, we first rule out the possibility of ending up with an interval

of type (Hi). Since we know that (t3, t2) is of type (Med), it follows that

M(t) =
(
M(t2)− 1

2

)
e2ε(t2−t) + 1

2 , t ∈ [t3, t2];

see Equation (A.9). Next, since (t2, t1) is of type (Hi), Lemma 3.1.4 shows

that M(t2) ≤ k2 < 1/2. Thus M is strictly increasing on [t3, t2], that is

M(t3) < M(t2) ≤ k2. Now assume by contradiction thatW (t3) = ρ. Then we

may apply Lemma 3.1.3 to the type (Med) interval (t3, t2), which immediately

yields the contradiction M(t3) ≥ k2. We have therefore argued that there

exists t4 ∈ [0, t3) such that (t4, t3) is an interval of type (Lo) and we are left

with showing that t4 = 0. To see this, note that M is given explicitly as

M(t) =
(
M(t3)− ε

κ+ε

)
e(κ+ε)(t3−t) + ε

κ+ε , t ∈ [t4, t3];

see Equation (A.6). Since (t3, t2) is of type (Med) andW (t3) = −ρ, Lemma 3.1.2

shows that M(t3) ≤ k1 < ε/(κ+ ε), so M is strictly increasing on [t4, t3]. But

then it follows that M(t) < k1 on (t4, t3) and thus t4 = 0 by Lemma 3.2.1.

Summing up the above discussion, we have argued that only the following five sequences of

interval types are possible:

(Med) (Lo) → (Med) (Hi) → (Med)

(Med) → (Hi) → (Med) (Lo) → (Med) → (Hi) → (Med)

4.2. Convergence of Dynamic Equilibria

Having identified all possible scenarios, we can now analyze the behavior of the solution (M,W )
as T → ∞. The main tool in our analysis is the following result.

Proposition 4.1. Let (a, b) be a non-empty open subinterval of [0, T ].

1. Suppose that k1 < ε/(κ + ε). If (a, b) is of type (Lo) and W (b) = −ρ, there exists a
constant L > 0 which does not depend on T such that b− a ≤ L.

2. Suppose that k2 < 1/2. If (a, b) is of type (Med), there exists a constant L > 0 which does
not depend on T such that b− a ≤ L. ⋄
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Proof. 1. Suppose that k1 < ε/(κ+ ε), the interval (a, b) is of type (Lo), and W (b) = −ρ. In

this case, M is given explicitly by

M(t) =
(
M(a)− ε

κ+ε

)
e−(κ+ε)(t−a) + ε

κ+ε , t ∈ [a, b];

see Equation (A.5). If we define

M̂ : [0,∞) → R, t 7→ M̂(t) := ε
κ+ε

(
1− e−(κ+ε)(t−a)

)
,

it follows that

M(t)− M̂(t) =M(a)e−(κ+ε)(t−a) ≥ 0, t ∈ [a, b].

The function M̂ is strictly increasing and satisfies

lim
t→∞

M̂(t) = ε
κ+ε > k1.

As such, there exists L > 0 which does not depend on a, b, T such that M̂(L+ a) > k1. We

subsequently argue by contradiction and assume that b − a > L. Then monotonicity of M̂
implies that

M(b) ≥ M̂(b) = M̂(b− a+ a) > M̂(L+ a) > k1

and hence, by continuity of M , we find t0 ∈ (a, b) such that M(t0) > k1. Since g is strictly

decreasing and by definition of k1 in (2.6) it follows that

g
(
M(t0)

)
< g(k1) = (β + 2ε)ρ,

from which we conclude using C = (κ− ε)ρ that

η := ρ−
g
(
M(t0)

)
+ C

β + κ+ ε
> ρ− (β + 2ε)ρ+ C

β + κ+ ε
= 0.

Next, since W (b) = −ρ and (a, b) is of type (Lo), it follows from Lemma 3.3.2 that we must

have M(b) ≤ k1 < ε/(κ+ ε). Now according to Equation (A.6) we have

M(t) =
(
M(b)− ε

κ+ε

)
e(κ+ε)(b−t) + ε

κ+ε , t ∈ [a, b],

from which we therefore conclude that M is strictly increasing on (a, b). Moreover, as g is

strictly decreasing and M is strictly increasing, it follows that g(M) is strictly decreasing on

(a, b). Using Equation (A.7) for the explicit representation of W on (a, b), we conclude that

W (t0) =W (b)e−(β+κ+ε)(b−t0) −
∫ b

t0

e(β+κ+ε)(t0−s)[g(M(s)
)
+ C

]
ds

> W (b)e−(β+κ+ε)(b−t0) −
[
g
(
M(t0)

)
+ C

] ∫ b

t0

e(β+κ+ε)(t0−s) ds.
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Computing the integral, using that W (b) = −ρ by assumption, and employing the definition of

η > 0, it follows that

W (t0) > −ρe−(β+κ+ε)(b−t0) −
g
(
M(t0)

)
+ C

β + κ+ ε

(
1− e−(β+κ+ε)(b−t0)

)
= −ρe−(β+κ+ε)(b−t0) + (η − ρ)

(
1− e−(β+κ+ε)(b−t0)

)
= −ρ+ η

(
1− e−(β+κ+ε)(b−t0)

)
> −ρ,

which contradicts the fact that t0 ∈ (a, b) and (a, b) is of type (Lo).

2. Suppose that k2 < 1/2 and (a, b) is of type (Med), which by Equation (A.8) implies that

M(t) =
(
M(a)− 1

2

)
e−2ε(t−a) + 1

2 , t ∈ [a, b]. (4.2)

With this, let us define

M̃ : [0,∞) → R, t 7→ M̃(t) := 1
2

(
1− e−2ε(t−a)

)
and conclude that

M(t)− M̃(t) =M(a)e−2ε(t−a) ≥ 0, t ∈ [a, b].

Since k2 < 1/2 by assumption, there exists λ > 0 sufficiently small with k2 + λ < 1/2.

Moreover, as M̃ is strictly increasing and M̃(t) → 1/2 as t → ∞, there exists a constant

L1 > 0 which does not depend on a, b, T such that M̃(L1 + a) > k2 + λ. Now define

η := −
g
(
k2 + λ

)
β + 2ε

− ρ.

Since g(k2 + λ) < g(k2), it follows from the definition of k2 in Equation (2.6) that

η = −
g
(
k2 + λ

)
β + 2ε

− ρ > −
g
(
k2
)

β + 2ε
− ρ = −−(β + 2ε)ρ

β + 2ε
− ρ = 0.

Now there exists L2 > 0 which does not depend on a, b, T such that

(2ρ+ η)e−(β+2ε)L2 < η, (4.3)

and we define L := L1 + L2. As before, we argue by contradiction and assume that b− a > L.

In that case, we have a+ L1 < a+ L < b. The choice of L1 therefore gives

M(L1 + a) ≥ M̃(L1 + a) > k2 + λ.

Hence, by continuity of M , there exists t0 ∈ (a, a+ L1) with M(t0) > k2 + λ. Analogously,

we obtain

M(b) ≥ M̃(b) = M̃(b− a+ a) > M̃(L1 + a) > k2 + λ.
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Hence, by monotonicity of g and since λ > 0, we have

max
{
g
(
M(b)

)
, g
(
M(t0)

)}
< g(k2 + λ) < g(k2).

Since g(M(t0)) < g(k2 + λ), it follows from the definition of η that

−
g
(
M(t0)

)
β + 2ε

> −
g
(
k2 + λ

)
β + 2ε

= η + ρ

and similarly, as g(M(b)) < g(k2 + λ),

−
g
(
M(b)

)
β + 2ε

> −
g
(
k2 + λ

)
β + 2ε

= η + ρ.

We now distinguish the two cases M(a) < 1/2 and M(a) ≥ 1/2. In the first case, it follows

from Equation (4.2) that M is strictly increasing on (a, b) and hence g(M) is strictly decreasing

on (a, b). Using the explicit formula for W on type (Med) intervals given in Equation (A.10),

we see that

W (t0) =W (b)e−(β+2ε)(b−t0) −
∫ b

t0

e(β+2ε)(t0−s)g
(
M(s)

)
ds

> W (b)e−(β+2ε)(b−t0) − g
(
M(t0)

) ∫ b

t0

e(β+2ε)(t0−s) ds

=W (b)e−(β+2ε)(b−t0) −
g
(
M(t0)

)
β + 2ε

(
1− e−(β+2ε)(b−t0)

)
> W (b)e−(β+2ε)(b−t0) + (ρ+ η)

(
1− e−(β+2ε)(b−t0)

)
= ρ+ η +

(
W (b)− ρ− η

)
e−(β+2ε)(b−t0).

In the second case, that is, when M(a) ≥ 1/2, we see from Equation (4.2) that M ≥ 1/2
everywhere on [a, b] so that M is decreasing and g(M) is increasing on (a, b). Thus, we have

W (t0) =W (b)e−(β+2ε)(b−t0) −
∫ b

t0

e(β+2ε)(t0−s)g
(
M(s)

)
ds

≥W (b)e−(β+2ε)(b−t0) − g
(
M(b)

) ∫ b

t0

e(β+2ε)(t0−s) ds

=W (b)e−(β+2ε)(b−t0) −
g
(
M(b)

)
β + 2ε

(
1− e−(β+2ε)(b−t0)

)
> W (b)e−(β+2ε)(b−t0) + (ρ+ η)

(
1− e−(β+2ε)(b−t0)

)
= ρ+ η +

(
W (b)− ρ− η

)
e−(β+2ε)(b−t0),

which is the same expression as for M(a) < 1/2. Since t0 < a+L1 and b− a > L = L1 +L2,

we obtain

b− t0 > b− a− L1 > L− L1 = L2.
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Using this and the fact that W (b) ≥ −ρ we conclude that

W (t0) > ρ+ η −
(
2ρ+ η

)
e−(β+2ε)(b−t0) > ρ+ η −

(
2ρ+ η

)
e−(β+2ε)L2 > ρ,

where we have used (4.3) for the last inequality. But this is the desired contradiction since (a, b)
is an interval of type (Med), implying that W (t0) < ρ.

We can now conclude that type (Lo) intervals are bounded independently of T . To see this, we

recall that we have two scenarios in which intervals of type (Lo) appear, namely

(Lo) → (Med) and (Lo) → (Med) → (Hi) → (Med).

These two scenarios have in common that the type (Lo) interval is always followed up by a

type (Med) interval and hence, denoting the type (Lo) interval by (a, b), we have W (b) = −ρ.

This implies that Proposition 4.1.1 is applicable and hence any type (Lo) interval is bounded by

a universal constant L > 0 which does not depend on T .

The case of type (Med) intervals is even more straightforward. By Proposition 4.1.2, any type

(Med) interval is bounded by a universal constant L > 0 which is independent of T . From this,

we conclude that the scenarios

(Med) and (Lo) → (Med)

are impossible for large T . Moreover, in the remaining scenarios

(Hi) → (Med) and (Med) → (Hi) → (Med) and (Lo) → (Med) → (Hi) → (Med)

the intervals of type (Lo) and (Med) are universally bounded, meaning that the intervals of

type (Hi) become arbitrarily large as T → ∞. With this, we can show that the dynamic

equilibria converge to the unique stationary equilibrium as T → ∞, thus establishing the

turnpike property.

Theorem 4.2 (Convergence of Dynamic Equilibria in Case (E1)). Suppose that k1 < ε/(κ+ ε)
and k2 < 1/2. Assume moreover that the terminal condition satisfies

−ρ < G(m) < ρ, m ∈ [0, 1].

For any T > 0, let (MT ,W T ) solve the equilibrium system (2.2) – (2.3) on [0, T ]. Then there exists
L > 0 such that, for all T > 2L and all initial values MT (0) ∈ [0, 1], we have

W T (t) ≥ ρ for all t ∈ (L, T − L).

In particular, on the interval (L, T − L), the action h = (stay , switch) is optimal. Finally, for the
every α ∈ (0, 1), it holds that

lim
T→∞

MT
(
αT
)
= κ

κ+ε ,

i.e. the dynamic equilibrium converges to the unique stationary equilibrium as T → ∞. ⋄
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Proof. From the discussion above, it follows that there exists L > 0 such that the interval

(L, T − L) is contained in an interval of type (Hi) for all T > 2L. If we denote this type

(Hi) interval by (aT , bT ), we have aT ≤ L and it follows from αT − aT → ∞ and uniform

boundedness of MT
that

MT
(
αT
)
=
(
MT (aT )− κ

κ+ε

)
e−(κ+ε)(αT−aT ) + κ

κ+ε → κ
κ+ε as T → ∞,

where we have used the closed-form expression for M given in Equation (A.11).

5. The Non-Unique Stationary Equilibrium Case (E2)

Let us now move on to the case (E2) in which the stationary equilibrium is no longer unique.

We remind ourselves that in (E2) we assume that k1 < ε/(κ+ ε) and 1/2 < k2 < κ/(κ+ ε).
We furthermore recall that in this situation there are two deterministic equilibria at M = 1/2
and at M = κ/(κ+ ε) as well as one randomized equilibrium at M = k2. Finally, according to

Theorem A.4, we can no longer guarantee that {W ∈ {−ρ, ρ}} has Lebesgue measure zero. In

fact, while k1 < ε/(κ+ ε) implies that {W = −ρ} has measure zero and hence there are no

intervals of type (Eq−), the choice of k2 implies that it is possible that {W = ρ} has positive

measure and there are possibly intervals of type (Eq+).

5.1. Structure of the Solution (M,W ) and Long-Run Behavior

Similarly to the case with a unique stationary equilibrium, the first step is to analyze the structure

of the solution of the equilibrium system. As before, we could use a backward induction to

determine all possible scenarios. In the present case (E2) the structure is, however, more

sophisticated as the solution may exhibit cyclic behavior as we shall see shortly. In particular,

since there is nothing to be gained by restricting the values of W at time T to get the backward

induction started, we now allow for an arbitrary continuous (and hence bounded) terminal

condition G. Regarding the structure of the solution of the equilibrium system, we make the

following general observations.

▷ If there is a non-empty interval (a, b) ⊂ [0, T ] of type (Lo) with b < T , then a = 0.

Indeed, in this case we have

M(t) =
(
M(b)− ε

κ+ε

)
e(κ+ε)(b−t) + ε

κ+ε , t ∈ [a, b]

by Equation (A.6). Now W (b) = −ρ and b > 0 imply that M(b) ≤ k1 < ε/(κ + ε)
by Lemma 3.3.2. Thus M is strictly increasing on [a, b] and hence M(a) < M(b) ≤ k1.

Assuming now that a > 0, Lemma 3.1.1 implies M(a) ≥ k1, which is an immediate

contradiction.

▷ It is not possible to have a chain of intervals of the form (Eq+) → (Med) → (Eq+).
Indeed, let a, b, c, d ∈ [0, T ] with a < b < c < d and suppose that the intervals (a, b) and

(c, d) are of type (Eq+) whereas (b, c) is of type (Med). Then M(b) = M(c) = k2 by
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the properties of intervals of type (Eq+). On the other hand, on type (Med) intervals,

M takes the form

M(t) =
(
M(c)− 1

2

)
e2ε(c−t) + 1

2 , t ∈ [b, c],

by Equation (A.9). Since M(c) = k2 > 1/2, we see that M is strictly decreasing on [b, c]
which contradicts M(b) =M(c) = k2.

▷ By the same argument, there is no chain of intervals of the form (Eq+) → (Hi) → (Eq+).

From these arguments we see that type (Lo) intervals are either of the form (0, b) for some

b ∈ (0, T ] or of the form (a, T ) for some a ∈ [0, T ). In the former case, i.e. if (0, b) is an interval

of type (Lo), Proposition 4.1.1 is still applicable and it follows that b is bounded by a constant

which does not depend on T . We now establish a similar result for the other case.

Lemma 5.1. For a ∈ [0, T ), suppose that the interval (a, T ) is of type (Lo). Then there exists a
constant L > 0 which does not depend on T such that T − a ≤ L. ⋄

Proof. Since k1 < ε/(κ+ ε) and g is strictly decreasing, it follows that g(k1) > g(ε/(κ+ ε)).
By continuity of g, it therefore follows that there exist λ ∈ (0, κ/(κ+ ϵ)) and η > 0 such that

g(m) ≤ g(k1)− η = (β + 2ε)ρ− η for all m ∈
[

ε
κ+ε − λ, ε

κ+ε + λ
]
. (5.1)

Now choose L1, L2 > 0 sufficiently large such that

κ
κ+εe

−(κ+ε)L1 = λ and − ρ− ηL2 < min
m∈[0,1]

G(m).

We claim that T − a < L := L1 + L2. To see this, we argue by contradiction and assume that

T − a ≥ L. We first show that∣∣∣M(t)− ε
κ+ε

∣∣∣ ≤ λ, t ∈ [a+ L1, T ].

Indeed, since (a, T ) is of type (Lo), we find that

M(t) =
(
M(a)− ε

κ+ε

)
e−(κ+ε)(t−a) + ε

κ+ε , t ∈ [a, T ]

by Equation (A.5). But then, for any t ∈ [a+ L1, T ],∣∣∣M(t)− ε
κ+ε

∣∣∣ = ∣∣∣M(a)− ε
κ+ε

∣∣∣e−(κ+ε)(t−a) ≤ κ
κ+εe

−(κ+ε)(t−a) ≤ κ
κ+εe

−(κ+ε)L1 = λ

by the choice of L1. In particular, it follows from (5.1) that

g
(
M(t)

)
≤ (β + 2ε)ρ− η, t ∈ [a+ L1, T ].

But then, again using that (a, T ) is of type (Lo), we find that

Ẇ (t) = g
(
M(t)

)
+ C + (β + κ+ ε)W (t)
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≤ (β + 2ε)ρ− η + (κ− ε)ρ− (β + κ+ ε)ρ = −η, t ∈ [a+ L1, T ],

where we have used W < −ρ on [a, T ] and C = (κ − ε)ρ. Since T − a ≥ L1 + L2 by

assumption, or, equivalently T − L2 ≥ a+ L1, the above estimate on Ẇ (t) holds in particular

for all t ∈ [T − L2, T ]. But then

G
(
M(T )

)
=W (T ) =W (T − L2) +

∫ T

T−L2

Ẇ (t) dt ≤ −ρ− ηL2 < min
m∈[0,1]

G(m)

by the choice of L2 and hence we have arrived at the desired contradiction.

With the previous result at hand, we conclude that type (Lo) intervals play no role in the long-

run behavior of (M,W ) as they are universally bounded. Other than that, in full generality,

the possible behavior of (M,W ) cannot be restricted any further. In particular, it is possible

that the solution exhibits cyclic behavior of the form

. . . (Med) → (Hi) → (Med) . . .

. . . (Med) → (Eq+) → (Hi) → (Med) . . .

. . . (Med) → (Hi) → (Eq+) → (Med) . . .

. . . (Med) → (Eq+) → (Med) . . .

. . . (Hi) → (Eq+) → (Hi) . . .

Moreover, these cycles can be combined as long as no sequences of the form (Eq+) → (Med) →
(Eq+) or (Eq+) → (Hi) → (Eq+) arise. We study the existence and properties of cycles in

much more detail in the next subsection. Before getting there, however, let us first establish the

main convergence result for the case (E2).

Theorem 5.2 (Convergence of Dynamic Equilibria in Case (E2)). Suppose that k1 < ε/(κ+ ε)
and 1/2 < k2 < κ/(κ+ ε). For any T > 0, let (MT ,W T ) solve the equilibrium system (2.2) –
(2.3) on [0, T ]. Then at least one of the following statements holds.

1. There exists {Tn}n∈N ⊂ (0,∞) with limn→∞ Tn = ∞, such that, for each n ∈ N, there is
an interval (an, bn) ⊂ [0, Tn] of type (Med) and it holds that

lim
n→∞

[
bn − an

]
= ∞ and lim

n→∞
MTn

(
(an + bn)/2

)
= 1

2 ,

that is, the dynamic equilibrium converges to the stationary equilibrium at M = 1/2 as
n→ ∞.

2. There exists {Tn}n∈N ⊂ (0,∞) with limn→∞ Tn = ∞, such that, for each n ∈ N, there is
an interval (an, bn) ⊂ [0, Tn] of type (Hi) and it holds that

lim
n→∞

[
bn − an

]
= ∞ and lim

n→∞
MTn

(
(an + bn)/2

)
= κ

κ+ε ,

that is, the dynamic equilibrium converges to the stationary equilibrium at M = κ/(κ+ ε)
as n→ ∞.
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3. There exists {Tn}n∈N ⊂ (0,∞) with limn→∞ Tn = ∞, such that, for each n ∈ N, there is
an interval (an, bn) ⊂ [0, Tn] of type (Eq+) and it holds that

lim
n→∞

[
bn − an

]
= ∞ and

(
MTn(t),W Tn(t)

)
= (k2, ρ),

that is, the dynamic equilibrium spends an infinite amount of time in the randomized
equilibrium at M = k2 as n→ ∞.

4. There exists {Tn}n∈N ⊂ (0,∞) with limn→∞ Tn = ∞, such that, for each n ∈ N, all
subintervals of [0, Tn] of type (Lo), (Med), (Hi), and (Eq+) remain bounded. In that
case, for each n ∈ N, the dynamic equilibrium cycles around the randomized stationary
equilibrium (k2, ρ). ⋄

Proof. Since intervals of type (Lo) are universally bounded, only intervals of type (Med), (Hi),
and (Eq+) can become unbounded in the limit. As such, the four cases given in the theorem

cover all possible limit behaviors of the equilibrium system, which is to say that at least one of

the cases has to occur. We now look at all four cases individually to establish the remaining

claims. To begin with, let {Tn}n∈N ⊂ (0,∞) with limn→∞ Tn = ∞, such that, for each n ∈ N,

there is an interval (an, bn) ⊂ [0, Tn] of type (Med) such that bn − an → ∞ as n→ ∞. Using

the closed-form expression for M on intervals of type (Med) given in Equation (A.8), it follows

that

lim
n→∞

MTn
(
(an + bn)/2

)
= lim

n→∞

(
M(an)− 1

2

)
e−ε(bn−an) + 1

2 = 1
2 .

This concludes the first case. The convergence in the second case is argued for analogously.

In the third case, there is nothing to show. Finally, the cyclic behavior in the fourth case is

established in Lemma 5.4 in the next subsection.

While the previous theorem gives a full account on the behavior of the equilibrium system

in the limit as T → ∞, we have not yet shown that all four cases may actually be observed.

Regarding the fourth case, we postpone the proof of existence of cycles and a detailed study of

the properties of cycles to the next subsection. Regarding the other three cases, it is simple to

show that these occur. Indeed, if we assume that

M0 =
1

2
and G ≡WT := −g(1/2)

β + 2ε
,

it is straightforward to see that there is a constant solution of the equilibrium system taking the

value (M0,WT ), and the entire time interval [0, T ] is of type (Med). Similarly, if

M0 =
κ

κ+ ε
and G ≡WT := −

g
(
κ/(κ+ ε)

)
− C

β + κ+ ε
,

there is a constant solution taking the value (M0,WT ) and [0, T ] is of type (Hi). Finally, if

M0 = k2 and G ≡ ρ,

it follows that there is a constant solution taking the value (k2, ρ), meaning that [0, T ] is of

type (Eq+). As such, all three cases are possible and it remains to study the possibility of cyclic

behavior of the equilibrium system.
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5.2. Analysis of the Cycles in the Equilibrium System

We are left with establishing the existence of cycles in case (E2), which then implies that

Theorem 5.2 cannot be improved in the sense that all four cases actually occur. In what follows,

we shall see that the dynamical system (M,W ) indeed admits cycles which all revolve around

the randomized equilibrium located at (k2, ρ). Figure 1 below shows a streamline plot of the

system in a neighborhood of this equilibrium and showing strong numerical evidence for the

existence of cycles.

Figure 1: A streamline plot of the equilibrium system in the (M,W )-plane indicating that the

dynamic equilibrium circles around the randomized stationary equilibrium at (k2, ρ).

To facilitate the study of the cyclic behavior of the solution of the equilibrium system, let us

first agree on a precise naming convention. For now, we restrict our attention to cycles which

do not involve intervals of type (Eq+).

Definition 5.3. Let (a, b) be a non-empty open subinterval of [0, T ].
1. We say that (a, b) is a halfcycle of type (Hi) if W (a) =W (b) = ρ and W > ρ on (a, b).
2. We say that (a, b) is a halfcycle of type (Med) if W (a) =W (b) = ρ and W < ρ on (a, b).

With this, if c ∈ (b, T ), we say that (a, b, c) is a cycle if (a, b) is a halfcycle of type (Hi) and (b, c)
is a halfcycle of type (Med). ⋄
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We start our discussion of the cyclic behavior by collecting some properties of halfcycles.

Lemma 5.4. Let (a, b) be a non-empty open subinterval of [0, T ].
1. If (a, b) is a halfcycle of type (Hi), the following statements hold.

(i) M is strictly increasing on [a, b] and satisfies M(a) ≤ k2 ≤M(b) < κ/(κ+ ε).
(ii) There is a unique t0 ∈ (a, b) such that Ẇ (t0) = 0. Moreover, we have Ẇ (t) > 0 for

all t ∈ (a, t0), Ẇ (t) < 0 for all t ∈ (t0, b), and

W (t0) = −
g
(
M(t0)

)
− C

β + κ+ ε
and M(t0) > k2.

2. If (a, b) is a halfcycle of type (Med), the following statements hold.
(i) M is strictly decreasing on [a, b] and satisfies M(a) ≥ k2 ≥M(b) > 1/2.

(ii) There is a unique t0 ∈ (a, b) such that Ẇ (t0) = 0. Moreover, we have Ẇ (t) < 0 for
all t ∈ (a, t0), Ẇ (t) > 0 for all t ∈ (t0, b), and

W (t0) = −
g
(
M(t0)

)
β + 2ε

and M(t0) < k2. ⋄

Proof. We only prove the first statement on halfcycles of type (Hi) since the second statement

follows analogously. We proceed in three steps.

Step 1: We prove (i). In order to show that M(a) ≤ k2, we first observe that W > ρ on (a, b)
and W (a) = ρ imply Ẇ (a) ≥ 0. But then

0 ≤ Ẇ (a) = g
(
M(a)

)
− C + (β + κ+ ε)W (a) = g

(
M(a)

)
+ (β + 2ε)ρ,

where we have used W (a) = ρ and C = (κ− ε)ρ. Rearranging terms and using the definition

of k2 in Equation (2.6) thus yields

g
(
M(a)

)
≥ −(β + 2ε)ρ = g(k2),

and we conclude that M(a) ≤ k2 since g is decreasing. The inequality M(b) ≥ k2 follows from

an analogous argument. Next, since (a, b) is of type (Hi), we have

M(t) =
(
M(a)− κ

κ+ε

)
e−(κ+ε)(t−a) + κ

κ+ε , t ∈ [a, b]

by Equation (A.11). Since M(a) ≤ k2 < κ/(κ + ε), we see that M is strictly increasing on

[a, b] and hence M(a) < M(b). Similarly, we have

M(b) =
(
M(a)− κ

κ+ε

)
e−(κ+ε)(b−a) + κ

κ+ε <
κ

κ+ε ,

which concludes part (i).

Step 2: Preparations for (ii). By construction, M and W satisfy

Ṁ(t) = κ− (κ+ ε)M(t), t ∈ (a, b),
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Ẇ (t) = g
(
M(t)

)
− C + (β + κ+ ε)W (t), t ∈ (a, b),

with M(a) < κ/(κ+ ε). We proceed to show that if there exists t0 ∈ (a, T ) with Ẇ (t0) = 0,

then W is strictly decreasing on [t0, b]. For this, we first note that the second-order derivative

satisfies

Ẅ (t) = ġ
(
M(t)

)
Ṁ(t) + (β + κ+ ε)Ẇ (t), t ∈ (a, b).

Note that, according to Equation (A.11), the function M is given explicitly as

M(t) =
(
M(a)− κ

κ+ε

)
e−(κ+ε)(t−a) + κ

κ+ε , t ∈ [a, b],

from which we conclude that M is strictly increasing since M(a) < κ/(κ+ ε) by part (i). In

particular, we get Ṁ(t) > 0 for all t ∈ (a, b) and since g is strictly decreasing, it follows that

Ẅ (t) < (β + κ+ ε)Ẇ (t), t ∈ (a, b).

Now Ẇ (t0) = 0, so W is strictly concave on [t0, b]. Together with Ẇ (t0) = 0 this implies that

W is strictly decreasing on [t0, b] as claimed.

Step 3: We are now ready to prove (ii). By step 1, we know that M is strictly increasing on [a, b].
Since W (a) = W (b) = ρ and W (t) > ρ for all t ∈ (a, b), it follows from continuity that W
admits a maximum on (a, b). Let t0 be the smallest number in (a, b) at which W attains a local

maximum. Since Ẇ (t0) = 0, it follows from step 2 that W is strictly decreasing on [t0, b] so

that t0 is in fact the unique maximum of W on [a, b]. Next, we note that

0 = Ẇ (t0) = g
(
M(t0)

)
− C + (β + κ+ ε)W (t0), that is, W (t0) = −

g
(
M(t0)

)
− C

β + κ+ ε

as claimed. Finally, after rearranging terms and using W (t0) > ρ as well as C = (κ− ε)ρ, we

conclude that

g
(
M(t0)

)
= C − (β + κ+ ε)W (t0) < (κ− ε)ρ− (β + κ+ ε)ρ = −(β + 2ε)ρ = g(k2),

implying that M(t0) > k2 since g is strictly decreasing.

The previous lemma implies that for any cycle (a, b, c) as in Definition 5.3 we have

M(a) ≤ k2 and k2 ≤M(b) < κ
κ+ε and

1
2 < M(c) ≤ k2,

with M(a) < M(b) and M(b) > M(c). Thus any cycle revolves around the randomized

equilibrium k2 and may possibly touch it. In fact, according to the discussion in the previous

subsection, there are also scenarios in which the trajectory of (M,W ) spends a positive amount

of time in (k2, ρ) in between halfcycles.

The extremal values of a halfcycle (a, b) in the the M -direction are precisely M(a) and M(b).
In the W -direction, the extremal values are ρ and W (t0), where t0 ∈ (a, b) is the unique point

with Ẇ (t0) = 0. We subsequently refer to a as the starting point and M(a) as the starting
value of the halfcycle. Similarly, we refer to t0 as the inflection point and W (t0) as the inflection
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value of the halfcycle. In what follows, we analyze which points in m ∈ [0, 1] can be starting

values of a halfcycle and which points w ∈ R can be inflection values of a halfcycle.

To simplify the exposition, we observe that we may subsequently abandon the terminal condition

and work on more general time index sets. More precisely, given a closed intervalAwith interior

denoted by I , we may consider functions

m : A→ [0, 1] and w : A→ R

such that m is absolutely continuous, w is continuously differentiable, and

ṁ(t) = F→
(
m(t),w(t)

)
a.e. and ẇ(t) = F←

(
m(t),w(t)

)
, t ∈ I.

Any such pair (m,w) is referred to as a trajectory of the equilibrium system. If a trajectory has

a halfcycle (a, b), it follows that there is a solution (M,W ) of the equilibrium system with the

same halfcycle. Indeed, we may choose t0 ∈ R and T > 0 such that (a, b) ⊂ [t0, t0 + T ] ⊆ A
and define a solution of the equilibrium system by setting (M,W ) := (m(·−t0),w(·−t0)) and

choosing G such that G(M(T )) ≡ w(t0 + T ). Then (a− t0, b− t0) is a halfcycle of (M,W ).
With this, it follows that in order to show that the equilibrium system admits halfcycles, it is

sufficient to show that there exist trajectories having halfcycles.

Lemma 5.5. The following statements hold.
1. There exists a trajectory having a halfcycle of type (Hi).
2. There exists a trajectory having a halfcycle of type (Med). ⋄

Proof. As usual we only prove the existence of a halfcycle of type (Hi) since the existence of a

halfcycle of type (Med) follows analogously.

Step 1: In this step we construct a candidate (m,w) for the desired trajectory. For this, define

L := 1
κ+ε

[
log
(

κ
κ+ε

)
− log

(
κ

κ+ε − k1

)]
> 0

and choose m ∈ (k2, κ/(κ+ ε)) such that

g(k2)− g(m) < L(β + κ+ ε)
(
g(k1)− g(k2)

)
, (5.2)

which is possible since g is continuous and strictly decreasing. Now let (m,w) solve

ṁ(t) = κ− (κ+ ε)m(t) and ẇ(t) = g
(
m(t)

)
− C + (β + κ+ ε)w(t), t ∈ R,

with boundary conditions

m(0) = m and w(0) = −g(m)− C

β + κ+ ε
.

Note that m > k2 implies

w(0) = −g(m)− C

β + κ+ ε
> −g(k2)− C

β + κ+ ε
=

(β + 2ε)ρ+ (κ− ε)ρ

β + κ+ ε
= ρ,
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and we furthermore observe that

ẇ(0) = g
(
m(0)

)
− C + (β + κ+ ε)w(0) = g(m)− C − (β + κ+ ε)

g(m)− C

β + κ+ ε
= 0,

which is to say that w(0) is the inflection value. As in part (ii) of Lemma 5.4.1, we have ẇ(t) > 0
for all t < 0 and ẇ(t) < 0 for all t > 0.

Step 2: We now verify that (m,w) indeed has a halfcycle. For this, we need to show that there

are a < 0 and b > 0 such that w(a) = w(b) = ρ, which means that (m,w) restricted to [a, b]
is a trajectory having a halfcycle (a, b). To that end, let us first define

t0 :=
1

κ+ε

[
log
(

κ
κ+ε −m

)
− log

(
κ

κ+ε

)]
< 0.

We proceed to show thatw(t0) ≤ ρ, so that the intermediate value theorem implies the existence

of a ∈ [t0, 0] with w(a) = ρ. We argue by contradiction and assume that w(t0) > ρ. First, we

observe that

t0 + L = 1
κ+ε

[
log
(

κ
κ+ε −m

)
− log

(
κ

κ+ε − k1

)]
< 0

since m > k2 > k1. Next, we note that m is given explicitly as

m(t) =
(
m(0)− κ

κ+ε

)
e−(κ+ε)t + κ

κ+ε , t ≤ 0;

see Equation (A.12). From this, it follows that m is strictly increasing on (−∞, 0] since it holds

that m(0) = m < κ/(κ+ ε). Moreover, we have

m(t0 + L) =
(
m− κ

κ+ε

)
e−(κ+ε)(t0+L) + κ

κ+ε = k1.

In particular, strict monotonicity of m and w on (−∞, 0] imply that

m(t) < k1 and w(t) > w(t0) > ρ, t ∈ (t0, t0 + L).

With this, using that g is strictly decreasing and C = (κ− ε)ρ, we obtain

ẇ(t) = g
(
m(t)

)
− C + (β + κ+ ε)w(t)

> g(k1)− (κ− ε)ρ+ (β + κ+ ε)ρ

= g(k1) + (β + 2ε)ρ = g(k1)− g(k2), t ∈ (t0, t0 + L).

Hence, since ẇ > 0 on (−∞, 0),

w(0) = w(t0) +

∫ 0

t0

ẇ(t) dt > w(t0) +

∫ t0+L

t0

ẇ(t) dt > ρ+ L
(
g(k1)− g(k2)

)
.

Recalling that m was chosen such that (5.2) holds, g(k2) = −(β + 2ε)ρ, and C = (κ− ε)ρ, it

follows that

w(0) > ρ+ L
(
g(k1)− g(k2)

)
> ρ+

g(k2)− g(m)

β + κ+ ε
=

C

β + κ+ ε
− g(m)

β + κ+ ε
= w(0),
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which is the desired contradiction. Hence w(t0) ≤ ρ, implying the existence of a ∈ [t0, 0) with

w(a) = ρ.

We are left with proving the existence of b > 0 with w(b) = ρ to finish the proof. For this, let

us choose t1 > 0 such that

m(t1) =
1
2

(
m+ κ

κ+ε

)
,

which is possible since m is strictly increasing, m(t) → κ/(κ+ ε) as t→ ∞, and

m(0) = m < 1
2

(
m+ κ

κ+ε

)
< κ

κ+ε .

Since w is strictly decreasing on [0,∞), we obtain

w(t) < w(0) = −g(m)− C

β + κ+ ε
, t ≥ 0.

With this and since m is strictly increasing on [0,∞) and g is strictly decreasing, we find that

ẇ(t) = g
(
m(t)

)
− C + (β + κ+ ε)w(t)

< g
(
m(t1)

)
− C + (β + κ+ ε)

(
−g(m)− C

β + κ+ ε

)
= g
(
m(t1)

)
− g(m) < 0, t ≥ t1.

Moreover, again using that ẇ(t) < 0 for all t > 0, we have

w(t) = w(0) +

∫ t

0
ẇ(s) ds ≤ w(0) +

∫ t

t1

ẇ(s) ds

< w(0) + (t− t1)
(
g
(
m(t1)

)
− g(m)

)
, t > t1.

Since the term in in brackets is strictly negative it follows thatW (t) < ρ for all t > t1 sufficiently

large. In particular, since w(0) > ρ, the intermediate value theorem guarantees the existence

of b > 0 such that w(b) = ρ.

Having established the existence of one halfcycle of each type, we now show that indeed

infinitely many halfcycles of each type exists. In particular, we prove that the set of all starting

values of a halfcycle as well as the set of all inflection values of a halfcycle are intervals.

Lemma 5.6. Let (m,w) be a trajectory.
1. If (m,w) has a halfcycle of type (Hi) with starting valuem < k2, then for allm′ ∈ (m, k2)

there is a trajectory having a halfcycle of type (Hi) with starting value m′.
2. If (m,w) has a halfcycle of type (Hi) with inflection value w > ρ, then for all w′ ∈ (ρ, w)

there is a trajectory having a halfcycle of type (Hi) with inflection value w′.
3. If (m,w) has a halfcycle of type (Med)with starting valuem > k2, then for allm′ ∈ (k2,m)

there is a trajectory having a halfcycle of type (Med) with starting value m′.
4. If (m,w) has a halfcycle of type (Med) with inflection valuew < ρ, then for allw′ ∈ (w, ρ)

there is a trajectory having a halfcycle of type (Med) with inflection value w′. ⋄
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Proof. As usual, we only prove the statements on halfcycles of type (Hi) as the remaining

statements can be argued for analogously. To fix notations, we subsequently denote the halfcycle

of (m,w) by (a, b) and write t0 ∈ (a, b) for the inflection point. We also set m := m(a) and

w := w(t0) for the starting value and the inflection value, respectively.

Step 1: Assume that m < k2 and let m′ ∈ (m, k2). We construct a trajectory (m′,w′) having a

halfcycle with starting value m′. For this, let us denote by A the area enclosed by the graph

of t 7→ (m(t),w(t)), t ∈ [a, b], and the line connecting (m(a), ρ) and (m(b), ρ). We consider

another trajectory (m′,w′) : R → [0, 1]× R such that

m′(0) = m′ and w′(0) = ρ.

Since m′ < k2, monotonicity of g and C = (κ− ε)ρ show that

ẇ′(0) = g(m′)− C + (β + κ+ ε)w(0) > g(k2) + (β + 2ε)ρ = 0,

that is, (m′,w′) enters the interior of the area A after time t = 0. Since the graphs of (m,w)
and (m′,w′) cannot intersect, this argument also shows that (m′,w′) can only exit the are A
at points (m̃, ρ) with m̃ ≥ k2. As such, to conclude that (m′,w′) has a halfcycle with starting

value m′(0) = m′, it is sufficient to show that (m′,w′) eventually leaves the area A, which is

to say that there exists t > 0 such that w′(t) = ρ. We argue by contradiction and assume that

w′ > ρ on all of (0,∞). In particular, it follows that m′ is given explicitly as

m′(t) =
(
m(0)− κ

κ+ε

)
e−(κ+ε)t + κ

κ+ε , t ∈ [0,∞);

see Equation (A.11). In particular, m′(t) → κ/(κ + ε) as t → ∞. But since any (m,w) ∈ A
satisfies m < M(b) < κ/(κ + ε), this is the desired contradiction. Hence (m′,w′) has a

halfcycle of type (Hi) with starting value m′.

Step 2: Assume that w > ρ and let w′ ∈ (ρ, w). We construct a trajectory (m′,w′) having a

halfcycle with inflection value w′. For this, let us denote by m,m′ the unique points satisfying

w = −g(m)− C

β + κ+ ε
and w′ = −g(m

′)− C

β + κ+ ε
.

Note that m(t0) = m, where t0 is the point of inflection of the halfcycle (a, b) of (m,w).
Indeed, since w(t0) = w and ẇ(t0) = 0, we get

0 = ẇ(t0) = g
(
m(t0)

)
− C + (β + κ+ ε)w(t0) = g

(
m(t0)

)
− C + (β + κ+ ε)w,

from which we conclude that m(t0) = m by strict monotonicity of g. In particular, we have

m < κ/(κ+ ε). Next, we observe that since

−g(k2)− C

β + κ+ ε
=

(β + 2ε)ρ+ (κ− ε)ρ

β + κ+ ε
= ρ,

it follows from ρ < w′ < w and the fact that g is strictly decreasing that k2 < m′ < m. Now

consider a trajectory (m′,w′) defined on R such that

m′(a) = m′ and w′(a) = w′.
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Since

ẇ′(a) = g
(
m′(a)

)
− C + (β + κ+ ε)w′(a) = g(m′)− C + (β + κ+ ε)w′ = 0,

the inflection value of the halfcycle is w′ as desired. To conclude, it therefore suffices to show

that there exist a′ < a and b′ > a such that w′(a′) = w′(b′) = ρ, implying that (a′, b′) is a

halfcycle of type (Hi). For this let us again consider the area A, which is the area enclosed

by the graph of t 7→ (m(t),w(t)), t ∈ [a, b], and the line connecting (m(a), ρ) and (m(b), ρ).
Since m(a) ≤ k2 < m′ and m(t0) = m > m′, it follows that there exists t ∈ (a, t0) such that

m(t) = m′. As in part (ii) of Lemma 5.4.1, we have ẇ(t) > 0. This implies

g(m′)− C + (β + κ+ ε)w(t) = ẇ(t) > 0 = g(m′)− C − (β + κ+ ε)
g(m′)− C

β + κ+ ε
,

and we conclude that

w(t) > −g(m
′)− C

β + κ+ ε
= w′.

In particular, we have argued that (m′(a),w′(a)) = (m′, w′) ∈ A. We argued before that

the trajectory (m′,w′) can leave the area A only at points (m̃, ρ) both forward in time and

backward in time. We now prove that the trajectory will eventually leave A, which then proves

the claim. Assume not, i.e. there is no a′ < a such that w′(a′) = ρ or no b′ > a such that

w′(b′) = ρ. Then m′ is given explicitly as

m′(t) =
(
m′(a)− κ

κ+ε

)
e−(κ+ε)(t−a) + κ

κ+ε , t ∈ R

by Equation (A.11). In particular, since m′(a) = m′ < m < κ/(κ + ε), it follows that m′ is

strictly increasing with

lim
t↓−∞

m′(t) = −∞ and lim
t↑∞

m′(t) = κ
κ+ε .

But since any (m,w) ∈ A satisfies 0 ≤ m(a) ≤ m ≤ m(b) < κ/(κ + ε) this leads to the

desired contradiction.

In conclusion, we have argued that as soon as the time horizon T is sufficiently large, there are

(uncountably many) scenarios in which cycles can be observed. In such scenarios, the solution

of the dynamic equilibrium system cycles around the randomized equilibrium at k2. This wraps

up our discussion of the case (E2).

A. Existence of Solutions of the Equilibrium System

In this appendix, we construct a solution of the equilibrium system

Ṁ(t) = F→
(
M(t),W (t)

)
for a.e. t ∈ [0, T ], M(0) =M0,

Ẇ (t) = F←
(
M(t),W (t)

)
for all t ∈ [0, T ], W (T ) = G

(
M(T )

)
,
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where we recall that

F→(m,w) :=


ε− (κ+ ε)m if w ≤ −ρ,
ε− 2εm if w ∈ (−ρ, ρ),
κ− (κ+ ε)m if w ≥ ρ,

(m,w) ∈ [0, 1]× R,

F←(m,w) :=


g(m) + C + (β + κ+ ε)w if w ≤ −ρ,
g(m) + (β + 2ε)w if w ∈ (−ρ, ρ),
g(m)− C + (β + κ+ ε)w if w ≥ ρ,

(m,w) ∈ [0, 1]× R.

The main challenge here is that no matter how we define F→ at w = −ρ and w = ρ, there

always is a discontinuity at these points. On the other hand, we observe that F← is in fact

continuous since C = (κ− ε)ρ implies

C + (β + κ+ ε)w
∣∣∣
w=−ρ

= (κ− ε)ρ− (β + κ+ ε)ρ = −(β + 2ε)ρ = (β + 2ε)w
∣∣∣
w=−ρ

and, similarly,

−C + (β + κ+ ε)w
∣∣∣
w=ρ

= −(κ− ε)ρ+ (β + κ+ ε)ρ = (β + 2ε)ρ = (β + 2ε)w
∣∣∣
w=ρ

.

To handle the discontinuity of F→, we introduce the regularized forward operator

F λ
→(m,w) := ε+ (κ− ε)ϕλ1(w)−

(
2ε+ (κ− ε)ϕλ2(w)

)
m, (m,w) ∈ [0, 1]× R,

where for λ ∈ (0, ρ] we let ϕλ1 , ϕ
λ
2 : R → [0, 1] be the Lipschitz continuous functions

ϕλ1(w) =


0 if w ≤ ρ− λ
1
λ(w − ρ+ λ) if w ∈ (ρ− λ, ρ)

1 if w ≥ ρ

and

ϕλ2(w) =



1 if w ≤ −ρ
− 1

λ(w + ρ− λ) if w ∈ (−ρ,−ρ+ λ)

0 if w ∈ [−ρ+ λ, ρ− λ]
1
λ(w − ρ+ λ) if w ∈ (ρ− λ, ρ)

1 if w ≥ ρ,

respectively. Note that

lim
λ↓0

ϕλ1(w) =

{
0 if w < ρ

1 if w ≥ ρ
and lim

λ↓0
ϕλ2(w) =


1 if w ≤ −ρ
0 if w ∈ (−ρ, ρ)
1 if w ≥ ρ,

from which we conclude that

lim
λ↓0

F λ
→(m,w) = F→(m,w) for all m ∈ [0, 1] and w ∈ R \ {−ρ, ρ}.
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We proceed to show that the regularized equilibrium system

Ṁλ(t) = F λ
→
(
Mλ(t),W λ(t)

)
, t ∈ [0, T ], Mλ(0) =M0, (A.1)

Ẇ λ(t) = F←
(
Mλ(t),W λ(t)

)
, t ∈ [0, T ], W λ(T ) = G

(
Mλ(T )

)
, (A.2)

admits a solution (Mλ,W λ) which converges to a solution (M,W ) of the original, unregular-

ized equilibrium system as λ ↓ 0.

Proposition A.1. For each λ ∈ (0, ρ], there exist continuously differentiable functions

Mλ : [0, T ] → [0, 1] and W λ : [0, T ] → R

which solve the regularized equilibrium system (A.1) – (A.2). Moreover, the family of functions
{(Mλ,W λ)}λ∈(0,ρ] is uniformly bounded and uniformly Lipschitz continuous on [0, T ]. ⋄

Proof. The existence of Mλ
and W λ

follows from Schauder’s fixed point theorem; see for

example Appendix A in [BHS21] for the line of argument in a slightly more complicated setting.

The uniform boundedness of Mλ
is obvious since Mλ

is [0, 1]-valued, whereas the uniform

boundedness of W λ
follows from the bounds

F←
(
m,w

)
≤ Fdown(w) := g(0) + C + (β + κ+ ε)w, (m,w) ∈ [0, 1]× R,

and, similarly,

F←
(
m,w

)
≥ Fup(w) := g(1)− C + (β + 2ε)w, (m,w) ∈ [0, 1]× R,

where we have used that g is decreasing. To make the argument precise, let us introduce two

functions Wdown : [0, T ] → R and Wup : [0, T ] → R given as the unique solutions of the linear

differential equations

Ẇdown(t) = Fdown

(
Wdown(t)

)
, t ∈ [0, T ], Wdown(T ) = min

m∈[0,1]
G(m),

Ẇup(t) = Fup

(
Wup(t)

)
, t ∈ [0, T ], Wup(T ) = max

m∈[0,1]
G(m).

Then we have Wdown(T ) ≤W λ(T ) ≤Wup(T ) and

Ẇup(t)− Fup

(
Wup(t)

)
≤W λ(t)− Fup

(
W λ(t)

)
, t ∈ [0, T ]

Ẇ λ(t)− Fdown

(
W λ(t)

)
≤ Ẇdown(t)− Fdown

(
Wdown(t)

)
t ∈ [0, T ].

We now argue that this implies

Wdown(t) ≤W λ(t) ≤Wup(t), t ∈ [0, T ] :

As usual we only prove the first statement, i.e., Wdown(t) ≤W λ(t) for all t ∈ [0, T ]. Assume

not, then there are t̂ ∈ [0, T ] and ϵ > 0 such that Wdown(t̂) =W λ(t̂) and Wdown(t) > W λ(t)
for all t ∈ (t̂− ϵ, t̂). In this case ∆(t) :=Wdown(t)−W λ(t) ≥ 0 for all t ∈ (t̂− ϵ, t̂] and

∆̇(t) = Ẇdown(t)− Ẇ λ(t) ≥ Fdown(Wdown(t))− Fdown(W
λ(t))
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= (β + κ+ ϵ)∆(t), t ∈ (t̂− ϵ, t̂).

Hence, ∆′(t) := ∆(t)e−(β+κ+ϵ)t
satisfies ∆̇′(t) ≥ 0 for all t ∈ (t̂ − ϵ, t̂). This implies that

∆′(t) ≤ ∆′(t̂) = 0 for all t ∈ (t̂ − ϵ, t̂). Therefore, we obtain ∆(t) ≤ 0 for all t ∈ (t̂ − ϵ, t̂),
which is the desired contradiction.

Since Wdown and Wup do not depend on λ, the uniform bound on W λ
obtains. Regarding

the uniform Lipschitz continuity of Mλ
and W λ

, it suffices to observe that both functions are

continuously differentiable and

F λ
→ and F← are bounded on [0, 1]×

[
min
t∈[0,T ]

Wdown(t), max
t∈[0,T ]

Wup(t)
]

with a bound not depending on λ.

We can now employ an argument based on the Arzelà-Ascoli theorem and Komlós’ lemma

to construct a sequence of solutions of the regularized system which converges to a pair of

functions (M,W ) such that M satisfies the forward equation in the sense of Fillipov, that is

Ṁ(t) ∈


{
F→
(
M(t),W (t)

)}
if W (t) ̸= −ρ, ρ,[

ε− (κ+ ε)M(t), ε− 2εM(t)
]

if W (t) = −ρ,[
ε− 2εM(t), κ− (κ+ ε)M(t)

]
if W (t) = ρ,

for a.e. t ∈ [0, T ], (A.3)

whereas W is the desired solution of the backward equation, that is,

Ẇ (t) = F←
(
M(t),W (t)

)
for all t ∈ [0, T ]. (A.4)

Proposition A.2. There exists a pair of functions (M,W ) such that M : [0, T ] → [0, 1] is
absolutely continuous and satisfies (A.3) with M(0) =M0 and W : [0, T ] → R is continuously
differentiable and satisfies (A.4) with W (T ) = G(M(T )). ⋄

Proof. Step 1: Construction of a candidate solution. Let {λn}n∈N ⊂ (0, ρ] be a sequence

converging to zero. For each n ∈ N, let (Mn,Wn) be the solution of the regularized equilibrium

system associated with λn given by Proposition A.1. With a slight abuse of notation, we write

ϕn1 := ϕλn
1 and ϕn2 := ϕλn

2 and Fn
→ := F λn

→

and set

ϕ∞1 (w) :=

{
0 if w < ρ

1 if w ≥ ρ
and ϕ∞2 (w) :=


1 if w ≤ −ρ
0 if w ∈ (−ρ, ρ)
1 if w ≥ ρ,

so that (ϕn1 , ϕ
n
2 ) → (ϕ∞1 , ϕ

∞
2 ) pointwise as n→ ∞. Since each pair (Mn,Wn), n ∈ N, shares

the same Lipschitz constant and the same bound, we see that {(Mn,Wn)}n∈N is equicontinuous

and pointwise bounded. Therefore, it follows from the Arzelà-Ascoli theorem that a subsequence,

which for convenience is again denoted by {(Mn,Wn)}n∈N, converges uniformly on [0, T ]
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to a pair of continuous functions (M, W̃ ) : [0, T ] → [0, 1]× R. Next, note that the sequences

{ϕn1 (Wn)}n∈N and {ϕn2 (Wn)}n∈N are bounded, hence in particular bounded in L2([0, T ]),
and therefore Komlós’ lemma [DS06, Theorem 15.1.2] guarantees the existence of a sequence

{(pn1 , pn2 )}n∈N of functions such that

(pn1 , p
n
2 ) ∈ conv

{(
ϕn1 (W

n), ϕn2 (W
n)
)
,
(
ϕn+1
1 (Wn+1), ϕn+1

2 (Wn+1)
)
, . . .

}
for all n ∈ N

converging in L2([0, T ]) to a pair of functions (p1, p2) : [0, T ] → [0, 1]2. But then there is a

subsequence of {(pn1 , pn2 )}n∈N that converges for a.e. t ∈ [0, T ] to (p1, p2). Just as before, we

still denote this subsequence by {(pn1 , pn2 )}n∈N. We highlight that, for each n ∈ N, there are

L(n) ∈ N convex weights ω1, . . . , ωL(n) ∈ (0, 1] and natural numbers n1 < · · · < nL(n) with

n1 ≥ n such that

pn1 =

L(n)∑
ℓ=1

ωℓϕ
nℓ
1 (Wnℓ) and pn2 =

L(n)∑
ℓ=1

ωℓϕ
nℓ
2 (Wnℓ).

Setting

M̃n :=

L(n)∑
ℓ=1

ωℓM
nℓ

and W̃n :=

L(n)∑
ℓ=1

ωℓW
nℓ ,

it follows from (Mn,Wn) → (M, W̃ ) that also (M̃n, W̃n) → (M, W̃ ) uniformly on [0, T ].
With this, let us now define W : [0, T ] → R to be the unique continuously differentiable

solution of

Ẇ (t) = F←
(
M(t),W (t)

)
, t ∈ [0, T ], W (T ) = G

(
M(T )

)
.

Step 2: We argue that W̃ =W . For each n ∈ N and each t ∈ [0, T ], we note that∣∣Wn(t)−W (t)
∣∣

≤
∣∣G(Mn(T )

)
−G

(
M(T )

)∣∣+ ∫ T

t

∣∣F←(Mn(s),Wn(s)
)
− F←

(
M(s),W (s)

)∣∣ ds
≤
∣∣G(Mn(T )

)
−G

(
M(T )

)∣∣+ LT sup
t∈[0,T ]

∣∣Mn(t)−M(t)
∣∣+ L

∫ T

t

∣∣Wn(s)−W (s)
∣∣ds,

where we have used that F← is Lipschitz continuous with Lipschitz constant denoted by L > 0.

Gronwall’s inequality implies∣∣Wn(t)−W (t)
∣∣ ≤ (∣∣G(Mn(T )

)
−G

(
M(T )

)∣∣+ LT sup
t∈[0,T ]

∣∣Mn(t)−M(t)
∣∣)eLT ,

from which we conclude Wn → W pointwise as n → ∞. But Wn → W̃ as n → ∞ by

definition of W̃ , so we must have W = W̃ .
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Step 3: We are left with showing that M is absolutely continuous and satisfies (A.3). For this,

let us observe that

lim
n→∞

d

dt
M̃n(t) = lim

n→∞

L(n)∑
ℓ=1

ωℓṀ
nℓ(t) = lim

n→∞

L(n)∑
ℓ=1

ωℓF
nℓ
→
(
Mnℓ(t),Wnℓ(t)

)
= lim

n→∞

L(n)∑
ℓ=1

ωℓ

[
ε+ (κ− ε)ϕnℓ

1

(
Wnℓ(t)

)
− 2εMnℓ(t)− (κ− ε)ϕnℓ

2

(
Wnℓ(t)

)
Mnℓ(t)

]
= ε+ lim

n→∞

[
(κ− ε)pnℓ

1 (t)− 2εM̃nℓ(t)− (κ− ε)pnℓ
2 (t)M(t)

− (κ− ε)

L(n)∑
ℓ=1

ωℓϕ
nℓ
2

(
Wnℓ(t)

)(
Mnℓ(t)−M(t)

)]
= ε+ (κ− ε)p1(t)−

(
2ε+ (κ− ε)p2(t)

)
M(t)

for almost every t ∈ [0, T ]. From this, it follows by dominated convergence that

M(t) = lim
n→∞

M̃n(t) =M(0) + lim
n→∞

∫ t

0

d

ds
M̃n(s) ds

=M(0) +

∫ t

0

[
ε+ (κ− ε)p1(s)−

(
2ε+ (κ− ε)p2(s)

)
M(s)

]
ds

for all t ∈ [0, T ], so M is indeed absolutely continuous and its a.e. derivative satisfies

Ṁ(t) = ε+ (κ− ε)p1(t)−
(
2ε+ (κ− ε)p2(t)

)
M(t) for a.e. t ∈ [0, T ].

Observe that

W̃ (t) ̸= ρ implies the existence of N ∈ N such that p1(t) = ϕn1
(
W̃n(t)

)
for all n ≥ N

and, similarly,

W̃ (t) ̸= −ρ, ρ implies the existence of N ∈ N such that p2(t) = ϕn2
(
W̃n(t)

)
for all n ≥ N.

Hence, we can assume without loss of generality

(p1, p2) =
(
ϕ∞1 (W̃ ), ϕ∞2 (W̃ )

)
=
(
ϕ∞1 (W ), ϕ∞2 (W )

)
whenever W ̸= −ρ, ρ,

from which we conclude that

Ṁ(t) = F→
(
M(t),W (t)

)
for a.e. t ∈ [0, T ] with W (t) ̸= −ρ, ρ.

Since ϕλ1 = ϕλ2 on [−ρ + λ,∞) for all λ ∈ (0, ρ), we have that pn1 = pn2 on {W (t) = ρ} for

eventually all n ∈ N. Hence, we can assume without loss of generality that p1 = p2 ∈ [0, 1] on

{W (t) = ρ}, implying that

Ṁ(t) ∈
[
ε− 2εM(t), κ− (κ+ ε)M(t)

]
for a.e. t ∈ [0, T ] with W (t) = ρ.
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Similarly, we note that ϕλ1 = 0 on (−∞, ρ− λ) for all λ ∈ (0, ρ), which in turn implies pn1 = 0
on {W (t) = −ρ} for eventually all n ∈ N. Hence, we can assume without loss of generality

that p1 = 0 and p2 ∈ [0, 1] on {W (t) = −ρ}, so that

Ṁ(t) ∈
[
ε− (κ+ ε)M(t), ε− 2εM(t)

]
for a.e. t ∈ [0, T ] with W (t) = −ρ.

Thus M satisfies (A.3).

Since W is continuous, it follows that {W ̸∈ {−ρ, ρ}} is open relative to [0, T ] and hence

decomposes into a family {In}n∈N̂ , N̂ ⊆ N, of disjoint intervals which are open relative to

[0, T ]. As such, by passing to the complement, we can write{
W ∈ {−ρ, ρ}

}
=

⋃
n∈N̂∪{0}

An,

where {An}n∈N̂∪{0} is a sequence of closed intervals. On each In, n ∈ N̂ , the right-hand side

of (A.3) is a singleton, so we have

Ṁ(t) = F→
(
M(t),W (t)

)
for a.e. t ∈ In,

and since W ̸= −ρ, ρ on In, the right-hand side never switches cases on In. Thus M satisfies a

linear differential equation on In and can be chosen to be continuously differentiable on In. On

the other hand, we can in general not rule out that all An, n ∈ N̂ ∪ {0}, have an empty interior,

which means that, in general, we cannot argue that {W ∈ {−ρ, ρ}} has Lebesgue measure zero.

In fact, this question depends crucially on the parameters k1 and k2 defined in Equation (2.6).

Lemma A.3. For n ∈ N̂ ∪ {0}, suppose that An has a non-empty interior denoted by (a, b) for
some a, b ∈ [0, T ] with a < b. Then M is constant and continuously differentiable on (a, b) with(

M,Ṁ
)
= (k1, 0) on (a, b) if W = −ρ on (a, b),(

M,Ṁ
)
= (k2, 0) on (a, b) if W = ρ on (a, b).

Moreover, it holds that

k1 ̸∈
[

ε
κ+ε ,

1
2

]
implies that any An with W = −ρ on An is a singleton,

and, similarly,

k2 ̸∈
[
1
2 ,

κ
κ+ε

]
implies that any An with W = ρ on An is a singleton. ⋄

Proof. By definition of An and continuity of W must have W = −ρ or W = ρ on all of (a, b),
so W is constant and satisfies Ẇ = 0 on (a, b). Let us consider the case W = −ρ, the other

case follows by similar arguments. Since W = −ρ on all of (a, b), we find that

0 = Ẇ (t) = g
(
M(t)

)
+ C + (β + κ+ ε)W (t) = g

(
M(t)

)
− (β + 2ε)ρ, t ∈ (a, b),
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which is to say that

M(t) = g−1
(
(β + 2ε)ρ

)
= k1, t ∈ (a, b).

In particular, M is constant and hence continuously differentiable with Ṁ = 0 on (a, b). But

since W = −ρ and M = k1, this is only possible if

0 = Ṁ(t) ∈
[
ε− (κ+ ε)M(t), ε− 2εM(t)

]
=
[
ε− (κ+ ε)k1, ε− 2εk1

]
, for a.e. t ∈ (a, b).

The last statement is equivalent to k1 ∈ [ε/(κ + ε), 1/2], which therefore concludes the

proof.

Combining what we have established thus far, we arrive at the following existence result for

the equilibrium system.

Theorem A.4. There exist functions

M : [0, T ] → [0, 1] and W : [0, T ] → R

where M is absolutely continuous, W is continuously differentiable and (M,W ) solves the system
(2.2) – (2.3). Moreover, for any solution (M,W ) of this system there exists N ⊆ N and disjoint open
intervals {In}n∈N with

⋃
n∈N In dense in [0, T ] such that, for each n ∈ N , M is continuously

differentiable on In and one of the following five cases holds true:

(Lo) W < −ρ and Ṁ = ε− (κ+ ε)M on In,

(Med) W ∈ (−ρ, ρ) and Ṁ = ε− 2εM on In,

(Hi) W > ρ and Ṁ = κ− (κ+ ε)M on In,

(Eq−) W = −ρ and M = k1 on In,

(Eq+) W = ρ and M = k2 on In.

In particular, there are at most countably many points at whichM is not continuously differentiable.
Finally,

(Eq−) is only possible if k1 ∈
[

ε
κ+ε ,

1
2

]
and (Eq+) is only possible if k2 ∈

[
1
2 ,

κ
κ+ε

]
. ⋄

Let us highlight that in the cases (Eq−) and (Eq+), we know M and W explicitly. In the other

cases, both M and W satisfy linear differential equations which we can solve in closed form.

For this, let us fix n ∈ N and write In = (a, b) for suitable a, b ∈ [0, T ] with a < b.

Case (Lo). If In is of type (Lo), the pair (M,W ) solves

Ṁ(t) = ε− (κ+ ε)M(t), t ∈ (a, b),

Ẇ (t) = g
(
M(t)

)
+ C + (β + κ+ ε)W (t), t ∈ (a, b).

From this, we find that (M,W ) = (M (Lo),W (Lo)) on [a, b], where, for all t ∈ [a, b],

M (Lo)(t) =
(
M(a)− ε

κ+ε

)
e−(κ+ε)(t−a) + ε

κ+ε (A.5)
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=
(
M(b)− ε

κ+ε

)
e(κ+ε)(b−t) + ε

κ+ε , (A.6)

W (Lo)(t) =W (a)e(β+κ+ε)(t−a) +

∫ t

a
e(β+κ+ε)(t−s)[g(M (Lo)(s)

)
+ C

]
ds

=W (b)e−(β+κ+ε)(b−t) −
∫ b

t
e(β+κ+ε)(t−s)[g(M (Lo)(s)

)
+ C

]
ds. (A.7)

Case (Med). If In is of type (Med), the pair (M,W ) solves

Ṁ(t) = ε− 2εM(t), t ∈ (a, b),

Ẇ (t) = g
(
M(t)

)
+ (β + 2ε)W (t), t ∈ (a, b),

From this, we find that (M,W ) = (M (Med),W (Med)) on [a, b], where, for all t ∈ [a, b],

M (Med)(t) =
(
M(a)− 1

2

)
e−2ε(t−a) + 1

2 (A.8)

=
(
M(b)− 1

2

)
e2ε(b−t) + 1

2 , (A.9)

W (Med)(t) =W (a)e(β+2ε)(t−a) +

∫ t

a
e(β+2ε)(t−s)g

(
M (Med)(s)

)
ds

=W (b)e−(β+2ε)(b−t) −
∫ b

t
e(β+2ε)(t−s)g

(
M (Med)(s)

)
ds. (A.10)

Case (Hi). If In is of type (Hi), the pair (M,W ) solves

Ṁ(t) = κ− (κ+ ε)M(t), t ∈ (a, b),

Ẇ (t) = g
(
M(t)

)
− C + (β + κ+ ε)W (t), t ∈ (a, b).

From this, we find that (M,W ) = (M (Hi),W (Hi)) on [a, b], where, for all t ∈ [a, b],

M (Hi)(t) =
(
M(a)− κ

κ+ε

)
e−(κ+ε)(t−a) + κ

κ+ε (A.11)

=
(
M(b)− κ

κ+ε

)
e(κ+ε)(b−t) + κ

κ+ε , (A.12)

W (Hi)(t) =W (a)e(β+κ+ε)(t−a) +

∫ t

a
e(β+κ+ε)(t−s)[g(M (Hi)(s)

)
− C

]
ds

=W (b)e−(β+κ+ε)(b−t) −
∫ b

t
e(β+κ+ε)(t−s)[g(M (Hi)(s)

)
− C

]
ds.

B. Construction of Dynamic Equilibria

This section is devoted to the proof of Theorem 2.1. Let us first recall the representative agent’s

optimization problem given by

sup
ν∈AT

Eν
[∫ T

0
e−βtψXt(M(t), νt) dt+ e−βTΨXT

(
M(T )

)]
.
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Following [BHS21], we denote by

H : S× [0, T ]× [0, 1]× R2 → R,

(i, t,m, v) 7→ H(i, t,m, v) := max
u∈U

{
e−βtψi(m,u) +Qi·(u)v

}
,

the Hamiltonian associated with this optimization problem, where we write Qi·(u) as short-

hand notation for the i-th row of the transition rate matrixQ(u). Next, we compute a maximizer

of the Hamiltonian, i.e. a function

h∗ : [0, T ]× [0, 1]× R2 → U2, (t,m, v) 7→ h∗(t,m, v) =

(
h∗1(t,m, v)

h∗2(t,m, v)

)

such that

H(i, t,m, v) = e−βtψi

(
m,h∗i (t,m, v)

)
+Qi·

(
h∗i (t,m, v)

)
v

for all (i, t,m, v) ∈ S× [0, T ]× [0, 1]×R2
. It is easily checked that such a function h∗ is given

by

h∗ : [0, T ]× R2 → U2, (t, v) 7→ h∗(t, v) :=


(switch, stay) if (v1 − v2)e

βt ≤ −ρ
(stay , stay) if (v1 − v2)e

βt ∈ (−ρ, ρ)
(stay , switch) if (v1 − v2)e

βt ≥ ρ,

where we observe that in our particular case h∗ does not depend on m. Given the maximizer

h∗, we may now introduce the reduced-form transition rate matrix

Q̂ : [0, T ]× R2 → R2×2,

(t, v) 7→ Q̂(t, v) :=

(
Q11

(
h∗1(t, v)

)
Q12

(
h∗1(t, v)

)
Q21

(
h∗2(t, v)

)
Q22

(
h∗2(t, v)

)) ,
and the reduced-form running reward

ψ̂ : [0, T ]× [0, 1]× R2 → R2, (t,m, v) 7→ ψ̂(t,m, v) :=

(
ψ1

(
m,h∗1(t, v)

)
ψ2

(
m,h∗2(t, v)

)) e−βt.
With this, the equilibrium system derived in [BHS21] reads

Ṁ(t) =M(t)Q̂11

(
t, v(t)

)
+
(
1−M(t)

)
Q̂21

(
t, v(t)

)
, M(0) =M0,

v̇(t) = −ψ̂
(
t,M(t), v(t)

)
− Q̂

(
t, v(t)

)
v(t), v(T ) = e−βTΨ

(
M(T )

)
,

for any initial fraction of customers M0 ∈ [0, 1]. By Theorems 6 and 9 in [BHS21], any solution

to this system of equations gives rise to an equilibrium (ν,M) by choosing ν ∈ AT as

ν : [0, T ]× S → U, (t, i) 7→ ν(t, i) := h∗i
(
t, v(t)

)
.
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We observe that the optimizer h∗ only depends on the scaled difference (v1 − v2)e
βt

. Thus, it is

natural to consider the transformation

W : [0, T ] → R, t 7→W (t) :=
[
v1(t)− v2(t)

]
eβt.

With this, a simple calculation shows that (M,W ) solves the reduced equilibrium system

Ṁ(t) =


ε− (κ+ ε)M(t) if W (t) ≤ −ρ,
ε− 2εM(t) if W (t) ∈ (−ρ, ρ),
κ− (κ+ ε)M(t) if W (t) ≥ ρ,

for a.e. t ∈ [0, T ],

Ẇ (t) =


g
(
M(t)

)
+ C + (β + κ+ ε)W (t) if W (t) ≤ −ρ,

g
(
M(t)

)
+ (β + 2ε)W (t) if W (t) ∈ (−ρ, ρ),

g
(
M(t)

)
− C + (β + κ+ ε)W (t) if W (t) ≥ ρ,

for all t ∈ [0, T ],

which is equivalent to (2.2) – (2.3) under the assumption that{
t ∈ [0, T ] :W (t) = −ρ or W (t) = ρ

}
has Lebesgue measure zero.

Let us now suppose that we are in the situation of Theorem 2.1, that is, we start with a solution

(M,W ) of the reduced equilibrium system (2.2) – (2.3) and let

h : R → U2, w 7→ h(w) :=


(switch, stay) if w ≤ −ρ,
(stay , stay) if w ∈ (−ρ, ρ),
(stay , switch) if w ≥ ρ.

Now define

ν(t, i) := hi
(
W (t)

)
, (t, i) ∈ [0, T ]× S.

Using that

h∗(t, v) = h
(
(v1 − v2)e

βt
)
, (t, v) ∈ [0, T ]× R2,

it is then easily checked that (ν,M) is indeed a dynamic equilibrium as claimed.
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